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We consider the adiabatic pumping of charge through a mesoscopic one-dimensional wire in the presence of
electron-electron interactions. A model of static potential in-between two-delta potentials is used to obtain
exactly the scattering matrix elements, which are renormalized by the interactions. Two periodic drives, shifted
one from another, are applied at two locations of the wire in order to drive a current through it in the absence
of bias. Analytical expressions are obtained for the pumped charge, current noise, and Fano factor in different
regimes. This allows us to explore pumping for the whole parameter range of pumping strengths. We show that
working close to a resonance is necessary to have a comfortable window of pumping amplitudes where charge
quantization is close to the optimum value; a single electron charge is transferred in one cycle. Interactions can
improve the situation, the charge Q is closer to one-electron charge, and noise is reduced, following a Q�e
−Q� behavior, reminiscent of the reduction in noise in quantum wires by T�1−T�, where T is the electron
transmission coefficient. For large pumping amplitudes, this charge vanishes, and noise also decreases but
slower than the charge.
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I. INTRODUCTION

The suggestion that electrons can be supplied one by one
by a mesoscopic circuit has been proposed over two decades
ago.1 Instead of applying a constant bias voltage to the sys-
tem, it is possible to supply ac gate voltages which perturb
the system periodically. Under certain conditions, the charge
transferred from one lead to the other, during one period, can
be almost quantized. Adiabatic pumping of electrons could in
principle be used in future nanoelectronic schemes based on
single electron transfer, and it also has applications to quan-
tum information physics. Over the years, theoretical ap-
proaches to this adiabatic pumping based on scattering
theory have become available.2–4 These situations typically
describe mesoscopic systems which are large enough or suf-
ficiently well connected to leads that electronic interactions
�charging effects, for instance� can be discarded. Scattering
theory has been applied4 to calculate both the charge and
noise in systems in the absence of electron-electron interac-
tions.

On the experimental scene, Coulomb blockade effects
have been successfully exploited to achieve pumping with
isolated quantum dots.5 To our knowledge, pumping experi-
ments which are not entirely based on Coulomb blockade,
where the shape of the electron wave functions is modified in
an adiabatic drive, are rather scarce. A recent study6 has dealt
with the transport through an open quantum dot where such
interactions are minimized.

Besides Coulomb blockade physics, the effect of electron-
electron interactions in conductors with reduced dimension-
ality has been discussed by several authors.7 The case of
strong interactions in a one-dimensional �1D� quantum wire
was presented in Ref. 8 using Luttinger liquid theory. Alter-
natively, Lal et al.9 discussed the opposite limit, where the
effect of weak interactions can be included in a scattering

formulation of pumping using renormalized transmission/
reflection amplitudes.10 However, the results for the pumped
charge remain mostly numerical in this work.

The conditions under which pumping amplitude and in-
teractions must be tuned to achieve quantized pumping are
not obvious. Many physical parameters enter this problem,
such as the amplitude of the pumping potentials, the phase
difference between these, the possibility of a constant offset
on these potentials, the overall conductance of the unper-
turbed structure, and to what extent the strength of electron-
electron interactions play a role. Analytical results on this
issues are highly desirable, as well as information about the
noise.

With regard to the experiment of Ref. 6, there is clearly a
need for further understanding the role of weak interactions
in such mesoscopic systems in the presence of pumping. The
purpose of the present work goes in this direction, in the
sense that we provide analytical expressions for the pumped
charge and the noise for a one-dimensional wire in the pres-
ence of interactions. This allows us to explore all pumping
regimes11 �weak to strong pumping� and to determine in
which manner and to what extent the pumped charge can
help us to achieve single electron transfer. Besides address-
ing the question of the ideal conditions for good charge
quantization, we shall establish relationships between charge
and noise in different regimes. For concreteness, a two-delta-
potential model will be used and interactions will be added
on top of it.

II. PUMPED CHARGE AND NOISE

A. Adiabatic pumping in noninteracting systems

Here, we recall the formula which was established for the
charge transferred during the single period of an adiabatic
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pumping cycle through a quasi-one-dimensional system. The
system is in general described by a potential V�x� containing
two internal parameters which are modulated periodically.
The time dependence is assumed to be sufficiently slow so
that, although the scattering matrix depends on time, its
variations are minute when an electron is scattered in the
mesoscopic wire.

At finite temperature, the pumped current reads12

Q = e�
0

2�/�

dt� f�E�Tr�S†�E,t��zS�E,t� − I�
dE

2�
, �1�

where S�E , t� is the Wigner transform of the scattering matrix
S�t , t�� and a good approximation to the scattering matrix for
the problem with the potential frozen. �z is the usual Pauli
matrix, I the identity matrix, and f the Fermi-Dirac function,

S�E,t� = �
−�

�

e−iE�t−t��S�t,t��dt�. �2�

The pumping potential will generate sidebands at E���
and we assume that temperature is much smaller than �, i.e.,
kBT	��, so that we can approximate the Fermi function by
a step function. In fact, temperature dependence occurs in
two places in this problem. First in the Fermi function and
second, the scattering matrix elements depend on the tem-
perature because of the renormalization due to the interac-
tions �see Sec. II B�. Formulas for averaged current and zero-
frequency noise can be carried out using results of the
literature in the “zero-temperature” formalism, except that
the scattering matrix elements are, in fact, temperature de-
pendent.

The pumped charge reduces to a time integral over a
pumping cycle,2,9

Q =
e

2�
�

0

2�

Im�� �s11

�X
s11

� +
�s12

�X
s12

� �dX

dt
+ �X ↔ Y�	dt ,

�3�

where s1i �i=1,2� are the elements of the scattering matrix
s�E�,

s�E� = ei
�− i
Rei� 
T


T − i
Re−i�� , �4�

where 
 is the phase accumulated in a transmission event
and � is the phase characterizing the asymmetry between the
reflection from the left-hand side and from the right-hand
side of the potential. Conservation of probabilities imposes
R+T=1. We assume the quantities 
R, 
T, �, and 
 to be
functions of the Fermi energy EF and of the external time-
varying parameters X�t� and Y�t�.

B. Inclusion of weak interactions

In the case of weak interactions, the transmission and the
reflection amplitudes s12 and s11 can be calculated in the
presence of Coulomb interaction via a renormalization
procedure.10 High energy scales above a given cutoff are
eliminated. The high energy cutoff is lowered progressively.

The renormalization has to be stopped when the temperature
becomes comparable to this cutoff. Finally, if s12

�0� and s11
�0�

denote, respectively, the transmission and reflection coeffi-
cient without interactions, s12 and s11, can be expressed in the
form10

s12 =
s12

�0�l�


1 + T0�l2� − 1�
, �5�

s11 =
s11

�0�


1 + T0�l2� − 1�
, �6�

where l=kB
 /W; 
 is the temperature, kB the Boltzmann
constant, and W the original bandwidth. � is a negative ex-
ponent related to the strength of the screened Coulomb inter-
action potential.10 Specifically,

� =
Vc�2kF� − Vc�0�

2�vF
, �7�

with Vc�q� as the Fourier transform of the screened Coulomb
potential at q=2kF and q=0, respectively, and Vc�0� is finite
due to screening. �=0 corresponds to the absence of
electron-electron interactions. T0= �s12

�0��2 represents the con-
ductance of the wire in units of e2 /h. From now on, Q will
denote the pumped charge with interactions and Q0 without
interactions. The integrand of Eq. �3� is therefore modified
by the presence of the interactions. Thus, temperature depen-
dence occurs through the renormalization of the S matrix. We
shall be interested in the regime where temperature is much
lower than pumping frequency, kB
	�, as said before, but
renormalization of S matrix should not be too severe so that
the renormalization of S matrix still makes sense. At very
low temperature, all barriers become almost opaque and
bosonization is required,7 so typically l��10−1, that is,
kB
�W101/�. For example, for nanotubes having � around
−0.3, this gives ���kB
�10−3W.

C. Two-delta-potential model and pumped charge

Consider the pumping charge Q transferred during a
single period through a 1D chain of an arbitrary potential
shape. Let two parameters of the system be modulated peri-
odically. The single-particle Hamiltonian reads

H =
�2k2

2m
+ V�x� + Vp�x,t� , �8�

where Vp�x , t� is the time-dependent perturbation part of the
arbitrary potential and has �-like potential form,

Vp�x,t� = 2kFX�t���x − xi� + 2kFY�t���x − xf� , �9�

with the amplitudes X�t�=Vi�t� /2kF and Y�t�=Vi�t� /2kF,
where Vi�t� and Vf�t� have periodic time evolutions with the
same period t0=2� /� and kF denotes the Fermi wave vector.
V�x� is the static potential in-between two � potentials. Be-
low, superscript indexes �0� indicate noninteracting systems.

Using the known relation,13
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s��
�0� = − ��� + 2ikFG0�x�,x�� , �10�

where G0�x� ,x�� are the usual real-space retarded Green’s
functions and the fact that the functional derivative of the
Green’s function �G0 /�V�x� can be written as the product of
two Green’s functions,14

�G0�x�,x��
�V�xj�

= G0�x�,xj�G0�xj,x�� . �11�

For the first parenthesis in Eq. �3�, we get

�s11
�0�

�X
s11

�0�� +
�s12

�0�

�X
s12

�0�� =
�1 + s11

�0���1 + s11
�0���

2ikF
, �12�

where we used the condition s11
�0�s11

�0��+s12
�0�s12

�0��=1, and s12
�0�

and s11
�0� are the bare transmission and reflection amplitudes

from the disordered system, without taking into account the
electron-electron interactions. For the second parenthesis in
Eq. �3�, we get

�s11
�0�

�Y
s11

�0�� +
�s12

�0�

�Y
s12

�0�� =
s12

�0�

2ikF
�s12

�0�s11
�0�� + s12

�0���1 + s22
�0��
 =

�T0�2

2ikF
.

�13�

Here, we used the current conservation requirement s21
�0�s11

�0��

+s12
�0��s22

�0�=0. s22
�0� is the reflection amplitude from the right of

the scatterer and can be presented as

s22
�0� = 2ikF

� ln s12
�0�

�Y
− 1. �14�

Substituting Eqs. �12� and �13� into Eq. �3�, using identity
�14�, we finally arrive at

Q0 = −
e

2�
�

0

2�/� � � ln s12
�0�

�X

� ln s12
�0��

�X

dX

dt
+ T0

dY

dt
�dt .

�15�

Similar expression for Q0 can be found in Ref. 15.
Using the same method for Q, we obtain, in the presence

of interactions,

Q = Q0 −
e�l2� − 1�

2�
�

0

2�
� ��Im� � ln s12

�0�

�X
�−� � ln s12

�0�

�X
�2�dX

dt

+ �Im� � ln s12
�0�

�Y
� − T0�dY

dt
	 T0

1 + T0�l2� − 1�
dt . �16�

For numerical simulations, we specialize to the case where
the static potential V�x�=0 in Eq. �8� and the time-dependent
perturbations are two �-like potentials separated by a dis-
tance 2a. The expressions of s12

�0� and s11
�0� are needed when the

single-particle Hamiltonian reads

H = �2k2/2m + Vp�x,t� . �17�

The elements of the S matrix in the absence of electron-
electron interactions are given by

s11
�0� =

��Ȳ − X̄�sin�2kFa� − i�2X̄Ȳ sin�2kFa� + �X̄ + Ȳ�cos�2kFa�
�
D

, �18�

s12
�0� =

1

D
, �19�

with

D = �1 − 2X̄Ȳ sin2�2kFa� + i�X̄ + Ȳ + X̄Ȳ sin�4kFa�
� ,

�20�

and X̄=X /2, same for Ȳ. s21
�0�=s12

�0� and s22
�0� is obtained by

replacing Ȳ by X̄ in s11
�0�.

D. Noise

Avron et al.15 studied adiabatic quantum pumping in the
context of scattering theory. Their goal was to derive under
what conditions pumping could be achieved optimally, in a
noiseless manner, with the assumption that the pumping fre-
quency is small compared to the temperature. This enabled
the authors to derive expressions not only for the pumped
charge per cycle but also for the pumped noise, the current-
current correlation function, averaged over a time which is

long compared to the period of the adiabatic drive, at zero
frequency. Specifically, the noise is defined from the current-
current time correlator,

S�t,t�� =
1

2
��I�t��I�t�� + �I�t���I�t�� , �21�

with �I= I− �I�. This correlator is then averaged over n0 pe-
riods of the pumping drive with n0 large, and it is taken at
zero frequency by performing an integral over the remaining
time argument. Setting �0=n02� /�,

S�� = 0� =
�

2�n0
�

0

�0

dt�
−�

�

dt�S�t,t�� . �22�

Moskalets and Büttiker4 extended the results of Ref. 15 to
the case where this limiting assumption is relaxed, yielding a
complete description of the quantum statistical properties of
an adiabatic quantum pump, albeit restricted to small pump-
ing amplitudes. Results made use of the generalized emissiv-
ity matrix. These results were generalized to arbitrary pump-
ing amplitudes by Polianski et al.12 Here, our goal is to
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address the question whether electron-electron interactions
affect the pumping noise and how. Following formula �14� of
Ref. 12 and applying their Eq. �15� without assuming that the
pumping amplitudes X�t� are small, it is possible to set the
zero-frequency noise S for arbitrary pumping amplitudes into
the form

S�� = 0� =
1

�2���2

e2

�0
�

0

�0

dt�
−�

�

d�t� − t�

��
−�

�

f�− �1��
−�

�

f��2�

�Tr�s��1,t�†�zs��2,t�s��2,t��†�zs��1,t�� − I


�ei �t−t����1−�2�/�d�1d�2, �23�

where s��1 , t� is the 2�2 S matrix for an incoming wave at
energy �1+�F and value of the pumping parameter X�t�. �0 is
a time which is much larger than the period �. �1=�2k1

2 /2m
−�F, where k1 is a wave vector and �F is the Fermi energy
�F=�2kF

2 /2m. f is the Fermi-Dirac function. Here, s��1 , t� is
taken for fixed t.12 Since we work at temperature much
smaller than �� /kB, as explained before, we can set f�−�1�
=1 for �1�0 and 0 otherwise. We set �2�=−�2 so that both �1
and �2� will be positive. M is defined as

M��1,�2�,t� = s��1,t�†�zs�− �2�,t� . �24�

S now reads

S =
e2

�2���2 lim
�0→�

�
0

�0 dt

�0
�

−�

�

dt��
0

�

d�1�
0

�

d�2�

�Tr�M��1,�2�,t�M��1,�2�,t��
† − I�e−i��t−t����1+�2��/�
.

�25�

Now, for large pumping amplitudes, the above formula needs
to be rearranged using the fact that X�t� is a periodic function
of period 2� /�. Note that the dependence of M on �1 and �2�
prevents the direct use of fast Fourier transform. Neverthe-
less, we can use the fact that, for given values of �1 and �2�,
M�t� and M�t�� are periodic functions of t. Switching to Fou-
rier transform,

M̂n��1,�2�� =
�

2�
�

0

2�/�

M��1,�2�,t�e
−in�tdt , �26�

M��1,�2�,t� = �
n=−�

+�

M̂n��1,�2��e
in�t. �27�

Performing the trace, we arrive at

S =
e2

2��2�
0

�

d�1�
0

�

d�2� �
n=−�

�

��M̂1,1n�2 + �M̂1,2n�2 + �M̂2,1n�2

+ �M̂2,2n�2 − 2�n,0��� �1 + �2�

�
− n�� , �28�

where �n,0 is 1 if n=0 and 0 otherwise and M̂i,jn is the �i , j�

element of matrix of M̂n��1 ,�2��, where energy dependences
have been omitted to ease the notations.

When �� is much smaller than �F, formula �28� can be
simplified. In this case, M��1 ,�2� , t� will be different from
M�0,0 , t� only when �1 or �2� are a non-negligible fraction of
�F. This occurs because M�0,0 , t� corresponds to matrix M
for incident wave and outgoing wave at energy �F. We de-
note by �1F typical energies of the order �F. �1F will corre-
spond to n of the order ��1F /���, which is very large. The

Fourier transform M̂n��1 ,�2�� will decrease exponentially
with n for large n. Thus, we can neglect the dependence on
�1 and �2� and replace them by zero, which amounts to re-
placing the energies by �F, except in the argument of the �
function. Under these conditions, we have

S � e2 �

2���
n�1

n��M̂1,1n�2 + �M̂1,2n�2 + �M̂2,1n�2 + �M̂2,2n�2�	 .

�29�

With our form of the S matrix, this formula is equivalent to
Eqs. �24a�–�24c� of Ref. 16, apart from an overall factor 2
�see Appendix C for details�. For numerical simulations how-
ever, we did not make this simplification and kept the depen-
dence on �1 and �2� of Eq. �28�.

III. DISCUSSION OF PHYSICAL RESULTS

We now illustrate these formulas by computing the charge
and noise in the case of two-delta-potential model. The two
parameters of the drive X and Y �Eq. �9�
 are chosen to vary
periodically according to

X = X0 + � cos��t� , �30�

Y = Y0 + � cos��t − �� , �31�

where X0 is a constant offset potential and � a phase differ-
ence. Note that X, X0, and � are all dimensionless �see Eq.
�9�
. To ensure maximal pumping, we shall specialize11 to
�=� /2.

A. Zero offset

First, the case without offset X0=Y0=0 is studied. To look
at the influence of interactions, we plot in Fig. 1 the pumped
charge in units of e, with interactions and without, versus the
amplitude of the drive � for an interaction parameter l2�

=0.3 �moderate electron-electron interactions�. There are
three regimes: weak pumping, �	1, intermediate pumping,
� of order 1, and large pumping amplitudes, ��1. The cur-
rent noise times 2� /�, in the limit of small �, is plotted
together in the same figure in units of e2. Analytically, for
�	1, Q reads

Q =
e

4
sin�4kFa�l−2��2. �32�

As noted in Ref. 9, in the weak pumping regime, charge Q
is larger with interactions by a factor l−2� �see Fig. 2�. Re-
sults in Ref. 4 for the noise valid for weak pumping and no
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interactions can be adapted in a straightforward fashion to
the case with interactions. We find the following formula for
the noise for weak pumping:

S = e2l−2��2 �

2�
. �33�

The noise is thus increased by the same factor as the
current. The Fano factor, defined as the ratio S /e�I�, is
4 /sin�4kFa� and remains independent of the interactions, as
long as we remain in the weak pumping regime. This corre-
sponds to the very left part of Fig. 1 for � smaller than 0.25,
typically.

At intermediate pumping amplitudes, Q reaches a maxi-
mum value Qmax which is again larger than its noninteracting
analog Q0 max. This maximum is of the order of the single
electron charge but less than it. Meanwhile, the noise de-
creases. This is a reminder of the reduction in the noise by a
factor T�1−T�, where T is the electron transmission coeffi-

cient in quantum wires. This explains why the noise exhibits
a first maximum around � close to 1; since Q gets closer to
one-electron charge, noise will decrease. Then, for moderate
amplitudes, � around 6, charge decreases and passes through
the value 0.5e, this corresponds then to the second maximum
of the noise.

For large but not very large pumping amplitudes, typically
�=10, Q remains smaller than Q0 but behaves in the same
way, namely, as �−3, as noted in Ref. 11. As a function of the
interaction parameter, Q behaves as Q0l2� �see Fig. 3�. For
very large pumping amplitudes �typically order 100 or
more�, Q becomes practically equal to Q0 and Q−Q0 be-
haves as �−4 �see Appendix B for details�.

For the noise, we found numerically that S and its analog
without interactions, S0, both decrease as �−2, much slower
than the charge �see below for analytical derivations�. As
concerns now the interaction dependence of the noise, S is
always smaller than S0, but for very large �, S tends toward
S0. More precisely, for large but still reasonable �, of the
order 10 typically, S is almost equal to S0l2�, whereas for
very large �, of the order 100 or more, S and S0 are practi-
cally the same. This is not surprising since Q and Q0 are then
also practically equal in the end.

This dependence on the interaction parameter is shown in
Fig. 4. We have to plot �2� /��S�2 vs l2�, but the overall
factor 2� /� is unimportant; the product S�2 can be com-
pared with both l2�S0�2 and to S0�2 for �=15 and �=200.
For �=15, we see that �2S is fairly well approximated by
�2S0l2�. On the contrary, for �=200, such a fit fails and
instead �2S is almost equal to �2S0.

The results at large � can be derived from analytical for-
mula for the charge and noise. An expansion for large � is
performed, and X and Y behave as �, except at particular
points where X or Y are zero �see Appendix A for details�.

B. Nonzero offset

We now turn to the case where X0 is nonzero, which en-
ables us to have regions where Q is almost quantized. There

η

Q

(2
π/

ω
)

S

0.0 5.0 10.0 15.0 20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 1. Q, charge with interactions �solid line�, and Q0, charge
without interactions �dashed line�, both in units of e. S noise with
interactions �dotted line� and S0 without interactions �dashed dotted
line�, multiplied by 2� /�, in units of e2 vs �. Essential parameters
are X0=0, no offset, l2�=0.3, kFa=0.5, and ��=10−2�F.

l
2α

Q

0.2 0.4 0.6 0.8 1.0
0.02

0.04

0.06

0.08

0.090.09

Q
0

l
−2α

FIG. 2. Q, charge with interactions �pluses�, and Q0l−2� �upper
dashed line�, both in units of e vs l2� for �=0.3, X0=0, kFa=0.5,
and ��=10−2�F.

l 2α

Q

0.2 0.4 0.6 0.8 1.0
4 x10

−4

10
−3

1.5 x10
−3

2 x10
−3

2.2 x10
−3

Q0l2α

FIG. 3. Q, charge with interactions �pluses�, and Q0l2� �lower
dashed line�, both in units of e vs l2� for �=15, X0=0, kFa=0.5,
and ��=10−2�F. In this regime, Q is approximately larger than Q0

by a factor l−2�.
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are basically three cases, according to the value of kFa.
The first case corresponds to kFa=n� /2 �rigorously�,

where n is an integer. In this case, it is impossible to pump
anything. The reason is given below. The second case corre-
sponds to the case where kFa is small but nonzero, 0.1 typi-
cally. We first describe the behavior, then give numerical
illustrations, and last provide analytical justifications. In this
case, the charge is almost zero up to �=X0. It rises quickly
around �=
2X0 and reaches a value close to quantized e for
a wide range of values of �. This is the quantized region of
�. The width of this region can be shown to scale approxi-
mately as �kFa�−1. After the end of this region, Q and Q0 first

decrease abruptly and for even larger values of �, decrease
slower, as �−3. The noise in the quantized region and around
it seems to be well approximated by Q�e−Q�, reminiscent of
the noise for fermions in narrow quantum wires. However,
this does not last when � becomes noticeably out of the
region of almost quantized charge, since Q and Q0 behave as
�−3, whereas S and S0 decay only as �−2.

Figure 5 shows noise and charge with and without inter-
actions versus � for kFa=0.1. Figure 6 shows a comparison
between S and a least-squares fit of the form CQ�e−Q�, in
the quantized charge regime, where C is the only adjustable
parameter �see captions for details�. We now turn to analyti-
cal justifications of the previous assertions.

We now explain why pumping is impossible for kFa
=n� /2. Since sin�2kFa�=0, the scattering matrix now de-

pends only on a single parameter, the combination �X̄+ Ȳ�
�see Eqs. �18�–�20�
, so we denote by sij

�0�� its derivative with

respect to X̄+ Ȳ. Thus,

Q0 =
e

�
�

0

2�/�

Im���
j=1

2

s1j
�0���X̄ + Ȳ�s1j

�0���X̄ + Ȳ��	
�

d

dt
�X̄ + Ȳ�dt = 0 �34�

because the bracket is just �1 /2�d /d�X̄+ Ȳ���s11
�0��2+ �s12

�0��2�.
Then, we look at the case when kFa is close to n� /2 but
different from it. Clearly, when sin�2kFa� is small, for
��sin�kFa���1, we will be back to the former case, so Q0 can
start to level noticeably from 0 only for � values larger than
a critical value �c1, which is proportional to 1 / �sin�2kFa��,
independent of X0. There is at least another scale, namely,
X0. For X0 large �typically larger than 10� and � smaller than
X0, the pumping contour is a circle which does not enclose
the origin and both transmission s12

�0� and derivatives of the
transmission coefficients �s12

�0� /�X are small. Q0 will remain
very small. Thus, to have a significant Q0, one needs �
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FIG. 5. Q �solid line�, curve with a plateau for � between 28 and
43 �the quantized region�, and Q0 �dashed line�. The two curves
with two spikes located at � around 28 and at � around 43 represent
�2� /��S �dotted line� and �2� /��S0 �dashed dotted line� vs �.
Essential parameters are X0=20, l2�=0.3, kFa=0.1, and ��
=10−2�F. Electron charge e is set to 1. The solid horizontal line of
ordinate 1 and the thick vertical line at �=X0
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the period �+�, and �2� /���2S0l2� �lower solid line� for moderate
�=15. Also illustrated by the top two curves is the very large pump-
ing amplitude regime, �2� /���2S ��� and �2� /���2S0 ���, for
very large �; �=100. The top two curves are close to each other. An
attempt to fit �2S by l2��2S0 �dashed line� for �=100 clearly fails
for this regime of pumping amplitudes. kFa=0.5 and ��=10−2�F

for all cases.
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FIG. 6. S �solid line�, in units of e2, and best fit of the form
CQ�e−Q� �dashed line� in the interval 20���45 for the same
situation as Fig. 5. The fit no longer works in the large pumping
regime for � between 45 and 80 here.
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�max�X0 ,1 / �sin�2kFa��
, where max�x ,y� is the larger of x

and y. For even larger �, when terms such as sin�2kFa�X̄Ȳ

dominate over terms linear in X̄ or Ȳ, i.e., ��sin�2kFa���

�1, it is possible to expand in �−1 and we are back to the
large pumping regime where Q decays as �−3. So, for
�sin�2kFa�� smaller than X0, there will be a region between
max�X0 ,C1 /sin�2kFa�
 and C2 /sin�2kFa�, where C1 and C2
are constants, where Q0 is appreciable. These very qualita-
tive arguments however do not prove that the charge is al-
most quantized in this interval, whose width is of the order
�sin�2kFa��−1.

We now turn to the analytical explanation of the Q�e
−Q� behavior in the quantized charge regime. It is useful to
disentangle the effects of the fluctuations of T and those of
the phase �. We start from Eq. �29� and use the fact that for

any periodic function f�x�, if f̂ n denotes the Fourier compo-
nent at frequency n�, denoting x=�t,

�
n�1

n� f̂ n�2 = �
0

2� �
0

2� �f�x� − f�x���
�x − x��2

dxdx�

4�2 . �35�

Applying the former equality to M̂1,1n, M̂1,2n, M̂2,1n, and

M̂2,2n and denoting by M11�x� the inverse Fourier transform

of M̂1,1n, we get

S = e2 �

2�
�

0

2� �
0

2�

��M11�x� − M11�x���2 + �M12�x� − M12�x���2

+ �M21�x� − M12�x���2 + �M22�x� − M22�x���2�

��x − x��−2dxdx�

4�2 . �36�

In terms of � and T, using Eqs. �4� and �24�, this reads

S = 8e2� �

2�
��I1 + I2� , �37�

with

I1 = �
0

2� �
0

2� �T�x� − T�x���2

�x − x��2

dxdx�

4�2 , �38�

I2 = �
0

2� �
0

2� �g�x� − g�x���2

�x − x��2

dxdx�

4�2 , �39�

with g�x�=
T�1−T�ei�. We expand �g�x�−g�x���2 and rewrite
I2 in the form

I2 = J1 + J2, �40�

with

J1 = �
0

2� �
0

2� �
T�x��1 − T�x�
 − 
T�x���1 − T�x��

�x − x��

�2

�
dxdx�

4�2 , �41�

J2 = �
0

2� �
0

2�


T�x��1 − T�x��
T�x���1 − T�x���

�
�e−i��x� − e−i��x���2

�x − x��2

dxdx�

4�2 . �42�

Thus, noise breaks into three parts, one related to the fluc-
tuations of T, another to the fluctuations of 
T�1−T�, and the
last to the fluctuations of �, in fact, to the variations of the
slope d� /dx, since � has to vary by 2� in one cycle to get
appreciable pumped charge. The physical message is that if
the fluctuations of T are much smaller than the fluctuations
of the phase, then noise shows a Q�e−Q� behavior. Other-
wise, fluctuations of T bring an extra noise that does not
contribute to the pumped charge and overall noise is thus
larger than Q�e−Q�. We now try to establish this more
firmly.

In this paragraph, we now show that, for Q0�e /2,

S0 � 8� �

2�
�Q0�e − Q0� . �43�

The first integral J1 involves solely the fluctuations of T and
can be rewritten as

J1 = �
n=1

�

n��T�1 − T�n
�

�2.

�44�
We have a lower bound for J1 by replacing n by 1 in all
terms of the sum except the term for n=0,

J1 � �
n=0

�

��T�1 − T�n
̂�2 − ��T�1 − T�0

̂�2.

�45�
Using then the Parseval identity for the first term and using
the notation �f���0

2�f�x�dx /2� for the second,

J1 � ��
T�1 − T��2� − �
T�1 − T��2

= �T� − �T2� − �
T�1 − T��2. �46�

Now for J2, applying twice the Hölder inequality,

J2 = �
0

2� dx�

2�

T�x���1 − T�x��
�

0

2�


T�x��1 − T�x�


�
�e−i��x� − e−i��x���2

�x − x��2

dx

2�

� �
0

2� dx�

2�

T�x���1 − T�x��
�
T�1 − T��

��
0

2� �e−i��x� − e−i��x���2

�x − x��2

dx

2�

� �
T�1 − T��2�
0

2� dx

2�
�

0

2� dx�

2�

�e−i��x� − e−i��x���2

�x − x��2 .

�47�

For the last double integral, we proceed as before, going
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again to Fourier transform, isolating the component of order
0, and using the Parseval identity, it is larger than ��ei��2�
− ��ei���2. Always �ei��=1 and, for reasonable ��x�, we can
assume symmetry x into −x which implies �sin ��=0. We can
also assume symmetry when x is changed into �−x, which
implies �cos ��=0. We have

J2 � �
T�1 − T��2. �48�

Now, for I1, using the same technique �going to Fourier
transform and isolating the n=0 component�,

I1 � �T2� − �T�2. �49�

Putting everything together

I1 + I2 � �T2� − �T�2 + �T� − �T2� − �
T�1 − T��2

+ �
T�1 − T��2 = �T� − �T�2. �50�

Now, assuming that �0
2� d


dx
dx
2� =0 �the circulation of 
 is

zero in one cycle�,

Q = e�1 − �T
d�

dx
�� , �51�

which implies

Q�e − Q� = e2��T
d�

dx
� − �T

d�

dx
�2� . �52�

Moreover, by the Hölder inequality,

�T
d�

dx
� � �T�� d�

dx
� = �T� . �53�

Now, for any y�1 /2, y�1−y� is a decreasing function of y.
Thus, if �T d�

dx ��1 /2, i.e., Q�e /2, then

�T� − �T�2 � �T
d�

dx
� − �T

d�

dx
�2

. �54�

Thus S�8� �
2� �Q0�e−Q0�, which is Eq. �43�.

Now we turn to the case of interest, when Q0�e /2, for
example, in the quantized region. We were not able to pro-
vide a general analytical proof of Q0�e−Q0� behavior. We
first look at simple limiting cases. Then, we examine the
particular case of the two-delta-potential model.

First, in a situation where T�x� is a constant T �with T
small to have almost charge quantization�, then Q0=e�1
−T� and S0=8C0� �

2� �Q0�e−Q0�, with C0 depending on the
shape of ��x�, but always C0 is greater than 1. In the case of
constant slope d� /dx=1, C0=1. Second, in the situation
where d� /dx is constant but T�x� arbitrary, we have
�T�d� /dx��= �T� and thus again Eq. �43� holds for any Q0,
not just for Q0 smaller than e /2.

However, in practice, � varies abruptly by � in the vicin-
ity of resonances. This is different from optimal pumping
strategies which have been studied before.15,19 We first give
qualitative arguments and then give precise calculations for
the model studied here. Let us look at the contribution of J2
�Eq. �48�
 to the noise. When x and x� are both close to
resonances �e−i��x�−e−i��x���2 / �x−x��2 behaves as �d� /dx�2 for
�x−x���d� /dx��1. If meanwhile, T�x� does not vary too

much and assumes the value Ti, the contribution of this re-
gion in the plane �x ,x�� to J2 will be Ti�1−Ti� /4. The 1/4
comes from the fact that � varies suddenly only by � and not
by 2� at each resonance. Another contribution will come
from the regions where x is within the resonance but x� just
outside or vice versa. Let us take x� outside to be precise.
Then �e−i��x�−e−i��x���=2 and integration on x and x� will give
a contribution mainly from x� just outside due to the rapidly
decreasing factor �x−x��−2. This will eventually give another
factor Ti�1−Ti� /4. Despite the nonlocal character of the in-
tegrand in J2, regions where x and x� are both far from a
resonance make very little contribution to J2. For Q, one gets
Q=e�1−�iTi /2�. In the simple case where there are only two
resonances and the Ti’s are equal, then Q=e�1−T1� and J2
=T1�1−T1�. If I1 and J1, which are related to the fluctuations
of T�x�, are much smaller than J2, then this leads to S0
=8�� /2��Q0�e−Q0�.

We now test the former very qualitative ideas by analyti-
cal calculations on our particular model. A first thing to be
noted is that the phase 
 does not intervene in the noise,
which is normal since noise is related to the two-particle
scattering matrix. On the contrary, it does formally enter the
equation for the pumped charge �see Eqs. �4�, �15�, and �16�
.
Nevertheless, the variation of 
 when �t varies in one period
is always zero so that 
 does not play any role. This is due to
the fact that 
 is the phase of D �see Eqs. �19� and �20�
. If
the real part of D becomes negative, then its imaginary part
cannot be zero and thus 
 can never be equal to −� or �.
Moreover, 
 varies by strictly less than 2� during one period
and thus its circulation is zero, giving no contribution to Q
and Q0.

We now turn to the variations of �. Charge quantization
necessitates � larger than 
2X0 and kFa small. We thus ap-
proximate cos�2kFa� by 1 and set u=sin�2kFa�	1. � can be
written as

� = arg�n� , �55�

with

n = X̄Ȳu + X̄ + Ȳ + iu�Ȳ − X̄� . �56�

There exist two values of �, �1, and �2, which play a par-
ticular role. For �1����2, when �t varies by 2�, Re�n�
changes twice its sign and � varies by 2�. In the model
studied here, �1=X0


2 and �2=X0

2+2
2u−1. Outside this

interval of �, the increase in � when �t varies by 2� is zero,
not 2�. The reason is the following. For ���1, Re�n� is
always positive and the phase � remains confined in an in-
terval contained in �− �

2 , �
2 
. For ���2, Re�n� changes four

times its sign but the contour described by n, in the complex
plane, as �t varies by 2�, does not enclose the origin. It can
be seen directly for it is impossible to have Im�n�=0 and
Re�n��0 at the same time. Thus, it is not surprising that the
quantized region corresponds approximately to the interval
��1 ,�2
.

We now examine more precisely the variations of � and T.
Apart from a small variation around x��t=−3� /4, �, as a
function of x, is essentially flat, except around two points x1
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and x2. In practice, x1 is close to −� /4 and x2 close to 3� /4.
Around those two points, � increases fastly by almost � each
time. We can thus model the function � by

� = − � for x � x1 − l ,

� =
�

2
� x − x1

l
− 1� for x1 − l � x � x1 + l ,

� = 0, for x1 + l � x � x2 − l

� =
�

2
�1 +

x − x2

l
� for x2 − l � x � x2 + l ,

� = �, for x � x2 + l �57�

with l being a small distance. As for T, T�x� shows a large
peak around x=xs=−3� /4, and two smaller peaks, practi-
cally identical, centered around x1 and x2. Away from these
values of x, T�x� is almost zero.

Now, we look at the implications for the charge and noise.
When calculating the pumped charge without interaction via
the formula 1

2��0
2� d�

dx �1−T�x�
dx, the region around x=xs
does not bring much contribution because variations of � are
small here. For the calculation of Q0 and S0, we can ignore
the large peak in T and thus model T�x� by

T�x� = T1 exp� �x − xi�2

�x − xi�2 − l2� for �x − xi� � l ,

T�x� = 0, otherwise. �58�

T has to be derivable in order to avoid logarithmic diver-
gences due to the factor 1 / �x−x��2 in Eqs. �38� and �39�.
Then, it is possible to perform analytical calculations which
give

Q0 = e�1 − C1T1� , �59�

S0 = C2� �

2�
��e − Q0��e�1 − C3� + �C3Q0�
 . �60�

Detailed calculations involving the integrals I1 and I2 and the
constants C1, C2, and C3 are given in Appendix B. C3 is
smaller than 1 �approximately 0.58�. Even if it is not exactly
of the form Q0�e−Q0�, when there is good charge quantiza-
tion, i.e., when Q0 is not far from 1, S0 goes as �e−Q0�. The
essential thing is that T and � vary rapidly around certain
values of �t. We do not get exactly Q0�e−Q0� because T
varies substantially when � jumps. One might wonder if the
results here are particular to our model. In fact, brisk varia-
tions of the phase are widely shared by many types of
models.17,18

The third case corresponds to kFa not close to n� /2. In
this case, for large X0, Q is almost zero except in the vicinity
of a value �c, which is very near 
2X0; numerically it seems
that �c is always a little less than this value. The maximum
pumped charge is of order e but no longer close to one-
electron charge. Noise has a double peak structure around �c.
A rough qualitative picture of this can be seen in Eq. �19�

because, as soon as the integration contour does not get close
to the point X�t�=Y�t�=0, for any t, the integrands in Eqs.
�15� and �16� are very small. An example is shown in Fig. 7.

IV. CONCLUSION

We have studied the influence of weak electron-electron
interactions on pumped charge and noise in the adiabatic
regime in a mesoscopic one-dimensional disordered wire.
Within the two-delta-potential barrier model, analytical re-
sults were obtained for the charge and noise. Results were
analyzed numerically for local pumping fields with a har-
monic dependence. Without any voltage offset, at weak
pumping amplitudes, interactions tend to enhance the
pumped charge, as l−2�, where l is the interaction parameter.
For fairly large pumping amplitudes, it is exactly the reverse;
Q and Q0 both decrease as �−3, but Q remains smaller than
Q0 by a factor l2�. At very large pumping amplitudes, Q and
Q0 are practically the same. As to the pumping noise, at
weak amplitudes, it increases with interactions, but in the
same way as the charge, so that the Fano factor remains
constant, independent of the interactions. For moderate
pumping amplitudes, noise has a double peak structure
around the maximum of pumped charge. For large ampli-
tudes, the noise decreases slower than the charge, as �−2, and
for very large amplitudes, noise with and without interac-
tions become approximately the same.

As emphasized in Ref. 9, interactions tend to make reso-
nances sharper, which is conducive to obtaining an almost
quantized pumped charge. However, it is not sufficient to
enclose a resonance; it is also necessary that the pumping
contour does not go too far from the resonance. Otherwise,
the noise is appreciable and the signal Q can even be very
small.

In the case of constant offset X0, the behavior depends if
we are close to a resonance kFa=n� /2 in the two-delta-
potential model. Close to a resonance, there is a region of
almost quantized pumped charge where the noise seems to
follow a Q�e−Q� behavior, reminiscent of the noise reduc-
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FIG. 7. Same as Fig. 5 except that kFa=0.4. The solid horizontal
line of ordinate 1 and the thick vertical line at abscissa X0


2 are just
guides for the eyes.
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tion in quantum wires for good transmission by a T�1−T�
factor, where T is the modulus of the energy transmission
coefficient. Quite generally, noise breaks up into pieces due
to fluctuations of T and those due to fluctuations of �. We
believe that in the quantized region, the fluctuations of � are
predominant and give rise to the Q�e−Q� behavior.

Interactions do help in having a charge closer to e and to
reduce the noise. However, it does not change the range of
pumping amplitudes, where quantized charge is observed,
i.e., the width of the quantized region practically does not
depend on the interactions. Qualitative arguments seem to
indicate that this width scales as sin�2kFa�−1 close to kFa
=n� /2. Further from the resonance, the maximum charge
which can be pumped becomes of order but less than e.
Moreover, the region of quantized charge shrinks to a narrow
window of pumping amplitudes around a value close to
X0


2.
In summary, our study of noise shows that interactions

tend to increase the quality of pumping. However, two con-
ditions need to be met: first, to operate at certain wave vec-
tors favoring sharp resonances and second to have a pumping
contour which encircles the resonant point, passing not very
far from it. Otherwise, only noise is produced and the quan-
tization of the charge is not achieved. These restrictions were
not pointed out in previous works. In addition, in the quan-
tized charge region, noise vanishes as e−Q.
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APPENDIX A

In this appendix, we consider the limit of large pumping.
In order to explain why, for offset X0=0, Q0 behaves like �−3

at large �, we use Eqs. �15� and �18�–�20�. Let us look first at

the terms involving dX̄ /dt.

X̄, Ȳ, as well as their time derivatives will be of order �,

except at isolated particular points. The term �� ln s12
�0� /�X̄�2

can be expanded in powers of 1 / X̄ and 1 / Ȳ,

� � ln s12
�0�

�X̄
�2

=
1

X̄2
−

cot�2kFa�

X̄3
+

3 cot2�2kFa� − 1

4X̄4

−
1 + cot2�2kFa�

4X̄2Ȳ2
+

cot2�2kFa� − 1

2X̄3Ȳ
+ o��−5� .

�A1�

All terms multiplied by dX̄ /dt and then integrated over one

period give zero. Note that a term such as 1 / �X̄4Ȳ�, which is
in �−5, would not give 0. Thus, for large �, the term propor-

tional to dX̄ /dt in Q behaves at least as �−3.

For the term involving dȲ /dt, the situation is simpler.

dȲ /dt goes as �, but since D goes as �2, T0 goes as �−4; thus
this term is at least in �−3. Now the remainder of contribu-
tions to Q−Q0 behaves at least like �−4 for large �; it can be
seen from Eq. �16�. For large �, since T0 goes as �−4, the
quantity T0 / �1+T0�A2�−1�
 is practically equivalent to T0

��−4. Im�� ln s12
�0� /�X̄� goes as �−1 for large �. The same

holds for Im�� ln s12
�0� /�Ȳ�. In the integral in the right-hand

side of Eq. �16�, Im�� ln s12
�0� /�X̄� is larger, by �, than

��� ln s12
�0� /�X̄��2. Then, Im�� ln s12

�0� /�X̄� is of order �−1

whereas T0 is of order �−4. Finally, the integrand is at least of

order Im�� ln s12
�0� /�X̄��dX̄ /dt�T0orIm�� ln s12

�0� /�Ȳ��dȲ /dt�T0,
which are both at least of order �−1����−4��−4.

We now evaluate the behavior of the noise for large �.
When �	�F, only the low order Fourier components of ��t�
are important. �1 and �2� will be much smaller than �F. At

�1=�2�=0, s11
�0��−e−2ikFa�1+ i / X̄+o��−2�
 and s22

�0� is the same

but X̄ is replaced by Ȳ. s12
�0�=−�1 /2X̄Ȳ��1+ i cot�2kFa�


+o��−3�. As a result, in Eq. �23�, s��1 , t�†�zs��2 , t�=�z
+o��−2�, the same holds for s��2 , t��†�zs��1 , t��, so that the
trace is o��−2�, which yields S of order �−2 at least.

APPENDIX B

In this appendix, we show the result of calculations for
the integrals I1 and I2 using Eqs. �57� and �58� for ��x� and
T�x�. The integrand of I1 and I2 are nonzero only if at least
one of x or x� is within distance l from an xi, i=1,2. We shall
need the integrals

M0 = �
0

1

exp� x2

x2 − 1
�dx � 0.603, �B1�

K1 = �
−1

1

exp� x2

x2 − 1
��1 − x�−1dx � 1.207, �B2�

K2 = �
−1

1 �
−1

1 �exp� x2

x2 − 1
� − exp� y2

y2 − 1
�	2

�x − y�−2dxdy

� 2.088, �B3�

L1 = �
−1

1 �
−1

1 �exp� x2

x2 − 1
� + exp� y2

y2 − 1
�

− 2 exp�1

2
� x2

x2 − 1
+

y2

y2 − 1
�	cos��

2
�x − y�	�

��x − y�−2dxdy � 7.997, �B4�

L2 = �
−1

1 �
−1

1 �exp� 2x2

x2 − 1
� + exp� 2y2

y2 − 1
�

− exp�1

2
� x2

x2 − 1
+

y2

y2 − 1
�	

��exp� x2

x2 − 1
� + exp� y2

y2 − 1
�	
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�cos��

2
�x − y�	��x − y�−2dxdy � 6.591. �B5�

Then, plugging these values into Eqs. �15�, �38�, and �39�,

Q0 = e�1 − T1C1� , �B6�

S0 = C2� �

2�
��e − Q0��e − C3�e − Q0�
 , �B7�

with

C1 = M0 � 0.603, �B8�

C2 =
2

�2 �8K1 + 2L1�/M0 � 8.613, �B9�

C3 =
L2 − K2

�L1 + 4K1�M0
� 0.58. �B10�

APPENDIX C

In this appendix, we show the equivalence of Eq. �29�
with Eqs. �24a�–�24c� of Ref. 16. There, the noise power P��

between leads � and � was given by

P�� = 2
e2

h
�
q=1

�

q��C��,q
sym ��� , �C1�

C��,q
sym �E� =

C��,q�E� + C��,−q�E�
2

, �C2�

C��,q�E� = �
�

�
�

�s��
� �E�s���E�
q�s��

� �E�s���E�
−q,

�C3�

where �A
q denotes the Fourier transform at frequency q� of
a time-dependent quantity A. In our case, there are only two
leads so that indices � and � are either 1 or 2. We are inter-
ested in P11, so we make �=�=1. Then, inserting the value
of the scattering matrix elements according to Eq. �4� leads
to

P11 = 4e2� �

2�
���

q�1
q��Tq�2 +

1

2
���
RTei��q�2

+ ��
RTe−i��q�2
	� . �C4�

On the other hand, using Eq. �29�, we obtain

S = 8e2� �

2�
���

n�1
n��Tn�2 +

1

2
���
RTei��n�2

+ ��
RTe−i��n�2
	� , �C5�

which is, apart from an overall factor 2, the same as Eq.
�C4�, with q changed to n.
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